
 

  



 

 
 
 
Engineering Standards and Design Practices 
 

1. Follow the Principles of Programming by adhering to IEEE software development practices 

 

● IEEE 1233-1996 IEEE Guide for Developing System Requirement Specifications 
○ Used for determining system requirements in relation to client needs and 

functional/non-functional requirements 
● IEEE 12207-2017 International Standard: Software life cycle processes 

○ Used for involving our stakeholders in the development process and production of 
maintainable software. 

● IEEE 1008-1987 Standard for Software Unit Testing 
○ Used as a model for developing unit testing for our control software 

● IEEE 802.1-2010 Standard for Port-based network controls  
○ Used as a model for communicating with the drone 

 

2. IEEE Code of Ethics provided by the IEEE organization 
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Summary of Requirements 

1) Integration of a secondary quadcopter into the high-speed camera system, 

2) Design and develop capabilities to support the implementation of the real world application by 
improving the GCS functionalities 

3) Integrate Crazyflie platform into system 

4) Implement GUI widgets to improve user interaction 

5) Design tuning stand to easily tune Crazyflie platform 

6) Configure existing system to fly multiple quadcopter and crazyflies simultaneously 

7) Make an adapter that converts existing control commands to equivalent functionality in the 
MAVLink telemetry protocol. 

 

 

 

Applicable Courses from Iowa State University Curriculum  
List of Iowa State University courses which were applicable towards the MircoCART project: 

● CPRE 288:  
○ This course: 

■ Goes over elementary embedded design flow/methodology 
■ It gives students a basic understanding of micro-controllers. 
■ Applications laboratory exercises with embedded devices. 

○ We work with microcontrollers a lot with the project as evident from the project 
title. Hence, this course is a great foundation to assist us in the project.  

● EE 230: 
○ This course: 

■ Is an overview of circuitry design and analysis 
■ Gives students experience working with laboratory instrumentation and 

measurements 
○ This is an applicable course as the project consists of circuit design knowledge 

from 230. 
● CPRE 381: 

○ This course: 
■ Is an introduction to computer organization and evaluating the 

performance of computer systems 
■ Datapath and control, scalar pipelines, and introduction to memory and 

I/O systems 
○ The project consists of  ARM-processors we would need to work with. And since 

this course is centered heavily around processors it is helpful towards the project.  
● EE 330: 
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○ This course: 
■ Goes over semiconductor technology for integrated circuits. 
■  Analysis and design of analog building blocks.  
■ Laboratory exercises and design projects with CAD tools and standard 

cells. 
○ The project would require an understanding of circuit issues such as unmatched 

impedance and circuit devices such as current mirrors. Which is why this course is 
applicable for the project.  

● EE 224: 
○ This course: 

■ Introduction to using Matlab for EE work 
■ Analysis of Signals and various signal systems like LTI 

○ This class teaches how to use Matlab and quadcopter controls are based in Matlab 
hence it is helpful for the project. 

● EE 321: 
○ This course: 

■ Continuation of EE 224 
■ Focuses more on modulation and data transmission 

○ Focuses on data transmission which applies to how the quadcopter communicates 
with the controls and ground station, which is heavily used in the project. 

● CPRE 488: 
○ This course is about: 

■ Embedded microprocessors and embedded memory 
■ Component interfaces communicating to embedded software 
■ Platform-based FPGA technology w/ hardware synthesis 
■ And Real-time operating system concepts 

○ This project requires knowledge with VHDL and C development on Xilinx 
platforms, multidisciplinary projects, embedded system design, and control 
systems on drones. Hence, why the course is applicable to the project.  

● SE 339: 
○ This course: 

■ Software architecture. 
■ Uses a raspberry pi to simulate a fleet tracking application. 
■ Teached about how different components in a project should 

communicate and the best practices to do so. 
○ This project requires knowledge of engineering and software architecture. Since 

various components of this project must communicate with each other like the 
camera system, the drones and the ground station. This course is applicable to this 
project in choosing the best architecture for our system 
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New Skills/Knowledge acquired that was not taught in courses 
 

Qt software libraries - Qt is an open source GUI development framework built to run on C++ 
applications. Qt was used to create our graphical user interface to meet the needs of our 
research/development users.  

RC communication - RC receivers and transmitters use defined methods of communication. Our 
application interfaces with an RC receiver. The receiver puts out 6 channel PWM signals. These 
signals are used to control drone behavior. 

PID Controls - PID Control is not generally taught in depth without taking specific controls classes. 
PID control uses feedback to account for present, past, and anticipated error. These errors are 
assigned different weights depending on gain values, and the overall output to the actuators is 
recalculated. PID is one of the control algorithms our drone platform uses to correct its position. 
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List of figures/tables/symbols/definitions (This should be similar to the 
project plan) 

 

 
Term Definition 

CLI Command-line interface 

Demo Short for demonstration; this is one of the deliverables of the project: a 
demonstration of the quad’s capabilities, for example, doing a backflip with 
the quad, finding an object and following it, communicating with a second 
quad to perform flight patterns 

FPGA Field Programmable Gate Array; this is a board that can be programmed to 
simulate electrical hardware components. Used often in reconfigurable 
computing 

GCS  Ground Control Station, the application that runs on a host computer that 
communicates with the quad via a Wi-Fi connection and sends its 
coordinates to the quad 

GUI Graphical user interface 

IR Infrared wavelengths of light longer than visible light; used in the VRPN 
system to determine the position of the quad 

LIDAR Light Detection and Ranging; this is a system for determining the altitude (z) 
of the quad using the onboard sensor 

Optical Flow A system using pattern of motion of objects, surfaces, and edges caused by 
the relative motion between the and the scene to determine position; used by 
the quad to calculate the position (x, y) when not in the lab using the VRPN 
system 

PID Proportional-integral-derivative control system; standard control 
algorithm used on the quad 

Quad Short for quadcopter; this is the hardware platform we use in this 
project 

Setpoint In a control system, the target value for an essential variable 

VRPN Virtual-Reality Peripheral Network; this is the system used to determine the           
position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using a set of                 
12 stationary cameras and an IR transmitter on the quad 
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Shield 
Board/Breakout 
Board 

PCB board designed by a previous MicroCART team that integrates with the            
Zybo board to interface with sensors and actuators used for autonomous           
flight. 

MAVLink MAVLink is a binary telemetry protocol used by several autopilot and ground            
control station platforms. MIT-licensed. Has several supported languages.  

AV Autonomous Vehicle 

SITL The software in the loop testing/simulation environment that served as the           
MAVLink adapter’s test environment 
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1 Introduction 

1.1 ACKNOWLEDGEMENT 

The development of this project has been aided by ECPE Faculty and graduate students at 
Iowa State. They offered valuable technical advice and insight. We would like to acknowledge their 
contributions to this project below.  

 

● Matthew Cauwels  
● Dr. Phillip Jones 
● James Talbert 
● May 2020 MicroCart Team 

 

1.2 PROBLEM AND PROJECT STATEMENT 

1.2.1 Problem Statement 

MicroCART is a drone platform that will be used by graduate students to perform research 
on embedded control systems. The platform will also need to be used for demonstrations to 
professionals or future students to showcase the utility of skills obtained through the course of a 
EE/CPRE/SE degree. This platform will also need to be maintainable and modifiable by future 
senior design teams.  Currently, the MicroCART quadcopter platform is functional, and it was to be 
extended to a copy of the current platform to implement simultaneous flight of two drones. Before 
working on the bigger drones we  used smaller drones called Crazyflies to test swarm flight 
capabilities as well as drone axis rotation with our created  3-D printed tuning stand. In order to 
achieve these objectives, we needed to copy, refine, and modify the current platform to have a more 
intuitive interface and more accurate flight performance.  
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Figure 1.2.1: Current drone implementations 

1.2.2 Solution Approach 

To implement our solution , we furthered our knowledge of the previous development 
done on the project. We read the documentation of the drone’s subsystems and inferred the 
functionality of portions that weren’t documented. We also elected focus areas for each team 
member to specialize in areas of drone development. Once each of us were familiar with our 
respective subsystems, we  started building the second platform.  

There is also a smaller drone platform that we  used to familiarize ourselves with 
navigation called Crazyflies. We hoped to implement swarm flight with the smaller Crazyflie 
drones, and once we had experience with the Crazyflies we would have been able to move on to 
navigating the larger drone. By the end of the first semester, we hope to have both large drones 
operationale. 

 The second semester  consisted of us adding new features to the drone to fulfill the 
purposes outlined above in the problem statement. The GUI and Embedded Software leads  worked 
on extending the functionality of the current GUI tool by adding new widgets like the datalog 
visualizer, PID sliders, and Draw to Flight. The team worked to implement swarm flight for the 
Crazyflie and quadcopter platforms, but the COVID restrictions on entering the 3050 lab halted 
progress to full completion. A MAVlink adapter for the existing backend software was developed to 
make up for loss of progress on the swarm flight deliverable.  As a team we worked to add Linux to 
the second core to promote development on the quadcopter  platform. This second Linux core 
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could have high level C++ libraries like OpenCV that could be used for soft real time object 
tracking. The Embedded Hardware, Controls and Physical Hardware Leads worked on 
implementing a small drone flight tuning stand to help future MicroCART teams and CPRE 488 
students tune smaller drone platforms like the Crazyflie.  

1.3 OPERATIONAL ENVIRONMENT 

The operational environment for the quad is the inside of Coover 3050, and this room has a 
VRPN camera system that can be used for drone navigation. For indoors operation there will not be 
any hazardous environmental factors like extreme heat or cold. The environment in the lab will 
have people in it, and the drone could collide with expensive equipment in the lab, so failsafes for 
flight faults are important considerations. Due to the fact that the operation environment is 
identical to its use environment, we expect little design difficulty caused by the operational 
environment 

 

1.4 REQUIREMENTS 

1.4.1 Functional Requirements 

The functional requirements for the project are different for each feature being 
implemented into the existing system. The functional requirements for the swarm flight were being 
able to connect both quadcopters to the backend software at the same time via TCP Socket, where 
the quadcopters are configured as servers. The quadcopters have the requirement of handling 
setpoints and parameter requests from the backend commands getparam and setparam. Both quad 
copters and crazy flies with swarm flight should be able to be given a grouping of setpoints that 
have no intersection. The quadcopters and crazy flies were to navigate to these setpoints and avoid 
collision while operating simultaneously. The extensions to the existing ground control station also 
have functional requirements.  

The functional requirements for the PID Sliders are as follows. The PID Slider widget was added 
into the existing GUI tool as a Qt Widget Class. This widget generates formatted commands 
(Format Described in Appendix 6.3.8)  to set the corresponding PID gains on the quad’s control 
graph (Control Graph Figure in Appendix 6.3.3). These commands are sent over to the quad using a 
TCP socket maintained by the Backend software. The Datalog Visualizer widget  takes in flight logs 
generated in the quad’s data logging format (Format Described in Appendix 6.3.2). These log files 
are parsed and the resulting data is displayed to screen based on user input, which will be expanded 
on in the UI requirements section. The Draw to Flight Widget reads a pattern drawn in the widget 
and converts this pattern into corresponding setpoints for two axis navigation. These setpoints are 
then used to generate a flight script which can be saved as a bash script and be executed later.  

The functional requirements for the mini-quad tuning stand are as follows. There are multiple 
types of stands, one type of stand will support single axis rotation another will support multi-axis 
rotation. These stands should be able to hold small drones and endure stress induced by their 
movement. The stands have sensors that will read information from the drones current orientation. 
A Microcontroller unit will process the sensor readings to display movement statistics over a 
command line interface. 

The MAVLink adapter also has functional requirements. This adapter will operate as a server for a 
TCP socket. This socket will establish connection to the backend based on the configuration of the 
config.c file. The MAVLink Adapter will handle getparam, setparam, and getnodes commands from 
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the client interface. The MAVLink adapter will act as a TCP server for a MAVLink device. The 
MAVLink adapter will convert the client commands to appropriate functionality to set waypoints 
and navigation behavior for the MAVLink platform. The MAVLink adapter will also be able to set 
on-board parameters with the getparam and setparam commands.  

1.4.2 Non-Functional Requirements 

The Non-functional Requirements for the swarm flight features are that they should communicate 
with the GCS wirelessly with an average latency of 2.2 ms (See References [2]). The vehicle 
platform’s stable points should not vary from the setpoint coordinates by more than 1.5 feet to 
quantify accurate performance and maintain safety regulation. The GUI widgets should respond to 
user input within at least a second to ensure usability. 

1.4.3 UI Requirements 

The UI requirements for the Datalog Visualizer are that a user should be able to select a log file 
from a file select window. A user should be able to specify the min and max bounds for each axis. 
The user should be able to select multiple axises to be displayed. The user should be able to view 
the name and units of each parameter using a drop down menu. The Draw to flight widget should 
allow a user to click and drag patterns on the screen. The user should be allowed to clear this 
pattern at any time. The PID Slider allows a user to slide between minimum and maximum values 
for the parameter.  

1.5 INTENDED USERS AND USES 

The platform will be used to test different control systems and their varying efficiencies for 
students. Students will require quick, simple interfaces to maximize learning and reduce time use 
for lab. The system will also be utilized in future senior design projects, requiring our team to 
practice good documentation and written communication techniques. Finally, the project will be 
utilized in college demonstrations as a means of showing off to our employers, alumni, and visitors 
what our college can do as well as an attempt to recruit future students. 

1.6 ASSUMPTIONS AND LIMITATIONS 

1.6.1 Assumptions 

● We wouldn’t have more than two large quadcopters in our operating environment 
○ Any further maybe too hazardous/complicated 

● The operating environment indoors wouldn’t contribute any significant hazards 
○ Humans acting in a hazardous manner might complicate this 

● We assumed that standard components we buy from manufacturers come in working 
condition 

○ This assumption may not be valid, but would save time for excessively testing 
every single electrical component  

○ This assumption cost us time because we assumed an IMU reading was valid, but 
severely impacted flight performance  

1.6.2 Limitations 

● Drone flying environment limited to the area of the camera sensors within Coover 3050 
○ The flight is dependent upon cameras tracking drone 

● The computational power of the drone 
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○ Limited in processing time 
○ Limited in memory access speed 

● Feedback delays in control systems by the camera systems 
○ Delay in ms expected 
○ From Wi-fi communication 

● Battery to payload ratio imposes limitations on overall runtime 
○ Battery technology and weight characteristics of drone limit flight to appr. 5 

minutes 
○ Frequent replacement of battery systems necessary 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 

The product is academic in nature so there aren’t commercialized descriptions.Detailed 
Documentation has been provided through gitlab markdowns and documentation generators like 
doxygen.  

1.7.1 Implementation of Second Drone 

We are going to make an exact copy of the current drone platform from the previous year. 
Most of the work done on this portion will be in the form of research on the existing system. In 
order to make another platform we will need to research the existing documentation. We are 
making this deliverable, because we need to have one stable platform to demo our solution to 
people and one for a senior design team to do development on. This deliverable was completed on 
October 25th. 

1.7.2 Swarm Flight of Crazyflies  

After we have a second drone, we will hopefully have access to several crazy flies. We can 
use these platforms to test out extending our GCS software to multiple platforms. This is an 
intermediate deliverable. We will use this deliverable to get experience with programming swarm 
flight with inexpensive platforms and move on to our permanent solution for swarm flight. 
Crazyflie flight was achieved midway through the first semester and swarm flight was worked on 
for the rest of first semester and about half of the second semester before Covid-19 stopped us.  

1.7.3 3-D Printed Tuning Table 

For testing our Crazyflie drones, we will design a 3-D printed tuning table. This table 
should be able to rotate on various axes so we can test our Crazyflies rotation abilities without 
worrying about crashes. Work on it began during the second semester and was finished about 2 
months into it.  

1.7.4 Swarm Flight of large drones  

After we have experience with swarm flight on the crazy flies and have the second drone 
built, we will work on having two drones operate simultaneously. This deliverable relates to our 
client's need of demoing to students and faculty. Showing multiple vehicles operating 
simultaneously is more impressive than just a single vehicle. This showcases the usefulness of skills 
obtained with an ECPE degree. Controls students also will want to test control algorithms with 
multiple platforms interacting. This was planned to be finished by the end of second semester but 
Covid-19 stopped our progress. 
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1.7.5 Draw to Flight  

The Draw to Flight feature was implemented into the existing GUI interface. This widget is 
responsible for reading a user drawn pattern and converting it into equivalent setpoints. These 
setpoints are converted into bash scripts that can be executed to send commands to the quadcopter 
platforms to get them to move to the desired setpoints.  

1.7.6 Data Log Visualizer 

The Data Log Visualizer uses the QCustomPlot open source widget to construct graphs of the 
recorded flight data from the quadcopter platform. The flight data will be in a specific format 
shown in the (See Appendix 6.3.2). The user will be able to select which parameters to be graphed. 
They can set the min and maximum bounds they want graphed. Dropdown menus will contain a 
list of parameter names and units. A user can select multiple y axis parameters to be plotted. This 
widget will help future MicroCART teams and Graduate Students debug complex flight issues.  

1.7.7 PID Slider 

The PID Slider Feature allows a user to send new PID gain constants to the quadcopter platform. 
The PID gains correspond with the parameters shown in the (See Appendix 6.3.3). The Slider 
Widget uses the MicroCART communication protocol to update the parameters of the quad. (See 
Appendix 6.3.9) This widget will help future MicroCART teams and Graduate Students be able to 
tune the PID coefficients on the drone’s control algorithm to improve flight performance. 

1.7.8 MAVLink Adapter 

The MAVLink Adapter converts the existing client commands (getparam, setparam, and getnodes) 
into a format that is compatible with the MAVLink open source project communication protocol 
for autonomous vehicles. The Adapter supports the MAVLink microservices used for getting and 
setting on-vehicle parameters, sending waypoints, and selecting flight modes. This deliverable will 
be evaluated for completeness using the Ardupilot open source project’s Software in the 
Loop(SITL) testing environment.  

2. Specifications and Analysis 

2.1 COMPLETED DESIGN 

The work completed during the second semester was reduced due to the closing of the               
labs. Before this happened development was made towards swarm flight, testing apparatus for             
crazyflie, and functionality of the groundstation. Expectations were discussed with our client with             
limited resources and milestones were set accordingly. The methods in which these tasks were              
accomplished involved using Agile methods to coordinate coding work and discord for            
communication. During the later half of the semester Zoom was used extensively for face-to-face              
interaction.  

 

2.2 DESIGN ANALYSIS 

During the first semester design portion of the project we have worked to understand the 
current implemented system. Each component of the system has been built over many years and 
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passed through many teams. It takes time to understand each portion of the system to an extent at 
which it can be utilized; therefore, the majority of the time has been spent reviewing documents.  

Our ability to process the current documents has progressed well into the second semester. 
Each person on the team has demoed the drone and has read documentation. We had begun to 
complete initial work including soldering, control system analysis, gui interfaces, and initial design 
document creation. Such completed portions of the design were a network setup to communicate 
with multiple drones, modularity of widgets within the GUI interface, and design of testing systems 
for crazyflie control development. 

 

Strengths 

● Team comradery and communication 
● Good mix of disciplines w/ large knowledge base 
● Contacts with previous MicroCART users to answer questions 
● Large group to distribute work 

 

Weakness 

● Large number of systems with intricacies 
● No control theory knowledge base 
● Poor documentation 
● Limited timeframe to implement 
● Little actionables with resources cut-off due to Covid-19 

2.3 DEVELOPMENT PROCESS 

After being assigned our project, we met with our customer and advisor to discuss the 
requirements for our project. Since we’re working on an embedded systems project, our system has 
multiple components that would have different requirements that would change as we move 
through the school year.  

We have completed the design phase of our project. Research was made in subjects control 
theory etc. to help us understand our customer/users better and in turn, produce a better tailored 
product.  

After the design phase, the implementation phase began. The implementation phase 
involved taking design and making them a reality. This was done using the research gained during 
the design phase, expected tools for the tasks, and solutions along the way. Unfortunately, we have 
not gotten out of the implementation phase as many of the pieces in development remain so due to 
restrictions in what can be worked on.  

Through the pieces of change during the phase of the year, we have utilized an agile 
development process. The plan is as such:  

● Tickets: We have used Trello to handle our tasks and keep track of the tasks that need to 
be done, the tasks that are in progress and our accomplished tasks. 

● Meeting with stakeholders: We have met our customers, users, and advisor once a week 
on Mondays to discuss our accomplished tasks and the concerns or goals they have for the 
coming sprint or sprints.  

● Sprints: We have used 1-week sprints in which we will go through one iteration of 
standup, grooming, retrospectives and stakeholder meetings. 

● Grooming: After our stakeholder meetings, we regrouped, and created and prioritized 
tickets on Trello for the new sprint. 

● Stand-up and Retrospective: We started our weekly team meetings with scrum, where 
we talk about what we did, what we planned on doing and if we had any blockers for that 
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sprint. Since we are full-time students, we compromised on doing this weekly instead of 
daily. 

2.4 DESIGN PLAN 

 

 

 

3. Statement of Work 

 

3.1 PREVIOUS WORK AND LITERATURE 

Microcart is an ongoing project at ISU that has been worked on by generations of students.                
Previous teams have already built quadcopter drones, testing platforms, and supporting control            
software. The previous year’s quadcopter design was used as a starting point for how to build and                 
modify a new version of the quadcopter. Having an existing system to build off of benefited us by                  
abstracting work needed to implement deliverables. For example, instead of having to write a              
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function to open a socket between the backend and a connected device, a previous team’s function                
could just be modified to meet our needs. 

There were also times where having an existing system had pitfalls. The system is very large                
and complex. It took a very long time to learn a subset of the relevant work done by previous                   
teams. Even after researching the code in the repository, there were some issues where code was in                 
a not working state. Some versions of the backend were missing some crucial source files that                
prevented compilation. This resulted in rolling back the software for the backend. Working within              
a large repository passed down between different teams has led to several redundant functions              
within the source.  

3.2 TECHNOLOGY CONSIDERATIONS 

Highlight the strengths, weakness, and trade-offs made in technology available. 

Discuss possible solutions and design alternatives 

Strengths 

● High performance processing 
○ Complex control integration 
○ Visual data computation 
○ General quickening in data processing 

● Flexibility of using FPGA with dedicated processor over just using a micro controller unit 
for embedded controls 

● New batteries with improved battery life and energy densities 
● High performance motors 
● Large existing software libraries 
● Open source software 
● Camera system with high accuracy positional data 

 

Weaknesses 

● Cost of new material and parts 
● Weight added to quadcopter resulting in lower battery life and risk of loss of flight 
● Controls and flight performance are very dependent on  

○ Quadcopter weight 
○ Motor resistance 
○ IMU calibration 
○ Properly tuned PID gains  

● Increased dependency on a large volume of different technologies results in a convoluted 
mashing of technologies that is not easily digestible by future teams/students 

 

Trade-offs (Summary) 

● Cost and complexity for more advanced solutions with return on drone abilities 
● Usage of new technologies tends to increase the abilities, but increases weight, power, and 

generally reduces performance of the drone 

3.3 TASK DECOMPOSITION 

3.3.1 Drone Construction 
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Leveraging of current drone hardware buildup and extra parts to create a new, fully 
functioning drone. The drone buildup will require the use of knowledge in electrical hardware skills 
and some mechanical understanding. The information on how to build-up the new drone will come 
from observations of the previous drone.  

3.3.2 Multi-Drone Flight  

The new drone built from the drone assembly process will be flown in tandem with the 
current working drone. The crazyflies in development are also going to be flown with the large 
drones. This will all require code for the drones to recognize each other's position and ensure no 
collisions occur. We will also have to modify the current networking scheme. The GCS and drone 
interact only with each other, so to add multiple drones we will need to reconfigure the networking 
scheme to an appropriate type [2]. 

3.3.3 Draw to Flight Widget 

The draw to flight widget was a subtask under the comprehensive UI deliverable category. This task 
involves using the Qt framework and existing GCS GUI to implement a widget that allows a user to 
draw a flight pattern on the screen. The resulting drawing coordinates were converted into a flight 
bash script that could then be executed to transmit setpoints to the quadcopter. The quad would 
then fly to these setpoints. One assumption of this feature, is that the quadcopter controls were 
tuned enough to accurately navigate between points. This assumption was invalid because the 
controls on the quadcopters were only accurate to extremely simple patterns.  

3.3.4 PID Slider Widget 

The PID Slider Widget was a subtask under the comprehensive UI deliverable category. This task 
involved creating another widget in the GCS GUI that would be used to easily set the values of the 
P, I, and D gains of the quadcopter control algorithm. This feature would ease the tuning process 
for users and developers. This task was implemented by testing the UI elements separately to 
confirm reading and setting values. After the UI portion was finished, the backend functionalities 
were tested by checking reads and writes to the quadcopter board. Finally, integration tests were 
done to confirm the whole widget worked as intended. 

3.3.5 Data Visualizer Widget 

The Datalog Visualizer Widget is a subtask under the comprehensive UI category. This task 
involved making a graph for showing recorded flight logs of the drone. The flight data contains 
information about orientation, and resulting outputs to the actuators. Logs can also be used to 
quantify flight performance by viewing rise time, overshoot, settingling time, steady state error and 
stability between the real position and setpoint positions.  

This task was implemented using the QCustomPlot software with Qt. QCustomPlot is under GNU 
general public license. This functionalities defined for this task are as follows, the widget reads in 
log data formatted in the drone’s log format(appendix), the widget displays this data to the screen 
depending on which axes and min max bounds the user sets for the x and y axes, and finally the 
widget should be able to display multiple plots on the y axis and select a log file from a log file 
selection window. This task was added later in the semester to account for lack of progress on the 
multiple drone flight due to COVID restrictions. 
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3.3.6 MAVLink Adapter Set and Receive Waypoints and Flight mode 

The implementation of setting and receiving waypoints from a mavlink device is a subtask of the 
MAVProxy adapter deliverable. This task involved writing C functions that used the Mavlink 2 C 
library to communicate with the platform to send navigation commands. The adapter maintains a 
two dimensional array of coordinates and transfers and edits these coordinates when a user uses 
the ./getparam and ./setparam commands of the ground control station.  This task shares 
dependency with the set and receive MAVParamters, because they both will be controlled with the 
getparam and setparam command line args. 

3.3.7 MAVLink Adapter Set and Receive MAVParameters 

 The implementation of setting and receiving MAVParameters is a subtask of the MAVLink adapter 
deliverable. This task included functionality for getting and setting the MAVParameters of the 
Mavlink platform which could be used for tuning navigation behavior. These parameters could be 
something like sensor, motor, or compass offsets.  

3.3.8 Mini-quad Tuning Stand Model 

Designing the model for the stand is a subtask of the Mini-quad Tuning Stand deliverable. The 
stand can be used for the tunning of the crazyfly and CPRE 488 drone platforms. The stand was 
designed with Autodesk inventor and had to have correct proportions to allow freedom on 3 axises 
of rotation.  

3.3.9 Mini-quad Tuning Stand Microcontroller and Sensor Processing 

Work was performed on the design of a turntable system to adjust the control system of 
mini-quads with focus on usage for the crazyflies. Two systems were generated: a single axis system 
and a gyroscopic system. Both would utilize the TIVA C-series Launchpad. Encoders that would 
measure the rotational speed and angle would interface with the microcontroller via the onboard 
ADC and QEI (Quadrature Encoder Interface). Unfortunately code was not fully developed as the 
sensors remain in the working lab. 3D models have been generated and printed.  

3.3.10 Crazyflie Adapter 

Crazyflie Adapter was partially worked on by a previous senior design team. This semester we used 
the old version of the adapter and modified the code to build on our new machines. The adapter 
was set up to work with the newest Crazyflie version. We also have set up a VM to run the Crazyflie 
CLI on Ubuntu so we have a sustainable release of the working project. We have then set up port 
forwarding in the VM for passthrough for communication between the adapter and the camera 
system.   

 

3.4 POSSIBLE RISKS AND RISK MANAGEMENT 

3.4.1 Equipment Risks 
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There are several things that have impeded the progress on deliverables. A large amount of 
time was spent trying to get the computers in Coover 3050 updated to ensure future teams could 
develop easier. One of the machines in the lab was 15 years old.  

A large amount of progress was lost on the multiple drone flying deliverable because an 
assumption was made earlier that the calibration of the IMU unit on the drone would not 
significantly impede flight performance. This assumption was false. A large amount was spent 
trying to get the second drone to fly with stability and accuracy, but the IMU readings were off, so 
it would lurch forward and flip.  

One of the RC Controllers broke part way through the semester, so the second drone 
needed a failsafe because there was only one working RC Controller. We resolved this issue by 
using one of the CPRE 488 controllers instead, but this was time consuming because the mappings 
for the controller and receiver didn’t line up.  

The Multiple drones flying deliverable was dependent on access to the 3050 lab, so COVID 
restrictions resulted in these deliverables not getting completed. 

3.4.2 Knowledge Area Risks 

Using the previous team’s software introduced several knowledge risks throughout the 
semester. The code that was given to us took a long time to understand. We had to use some 
frameworks we were unfamiliar with like Qt, QCustomPlot, Mavlink C library, and the CrazyFlie 
library. We also had to use development environments we weren’t familiar with like Vivado, XSDK, 
and Code Composer. We had limited knowledge on control tuning for the Quadcopter platform. 
Some of our deliverables were dependent on the quad’s performance, so that significantly impeded 
progress.  

3.4.3 Costs Risks 

We had several dependent hardware components that we needed to buy to support our 
drone applications. Buying these components halted our progress because we have to go through a 
purchasing procedure and justify our need for these components. Some components broke or 
malfunctioned, so we had to buy new ones. We had to buy custom circuit boards, RC controllers, 
Lithium Polymer batteries, etc. We have to wait for these things to be purchased in order to 
develop. We had to buy several new materials to construct the mini-quad stand. 

 

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

Key milestones for our project are 

1. Having multiple autonomous Crazyflies controlled with our GCS software  
2. Build our own Quadcopter drone 
3. Swarm flight with the Quadcopter  
4. Implement the Mini-Quad Stand 
5. Implement Linux to second core 
6. Improve UI 

a. PID Slider Widget 
b. Draw-to-Flight Widget 
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c. Datalog-Visualizer Widget 
7. MAVLink Adapter 

a. Set and Receive Waypoints 
b. Set and Receive MAVParams 

8. Mini-Quad Tuning Stand 
a. Physical Model 
b. Microcontroller and Sensor Processing 

The testing procedure for evaluating the success of each milestone is below.  

 

3.6 PROJECT TRACKING PROCEDURES 

Our team has multiple ways of tracking our project’s progress. We use Trello to 
communicate what needs to be done, their deadlines, and by whom. Our client also requires us to 
write weekly reports to track our one week sprint’s progress and a meeting to discuss the sprint. 
We have a scrum-style stand-up every week to ensure that our team members are making 
significant progress, that no progress is being blocked and to plan for collaboration. 

3.7 EXPECTED RESULTS AND VALIDATION 

The desired outcome of this project is to implement the deliverables described in section 2 
to service the needs of the user groups shown in the design plan diagram. The user groups are 
future Microcart teams, controls graduate students, and flight demonstration viewers touring the 
university. Each task can be mapped to the needs of a specific user group. 

Building our own quadcopter serves both future teams and graduate students. This has 
been evaluated by doing integration tests with the existing control software of the ground control 
station, unit tests with the XSDK with the debugger tools to ensure sensor reading fidelity, and the 
final system test has been repeatedly running flight scripts with the drone. The feature has been 
considered a success because the quad is able to fly within the same degree of accuracy as the 
previous year’s drone. This degree of accuracy can be described as a stable point being reached 
within 2 minutes and max variance from setpoints of less than 3 feet under normal flight 
circumstances. 

Implementing swarm flight for the large quad copters was never completed, but it would 
have shown the value of an ECPE degree to the flight demonstration viewers. We were partially 
successful because we were able to perform an integration test with two drones that proved that 
they could receive flight instructions with the getparam and setparam commands.  There is a url 
link to a video of the test listed in appendix 6.3.10. The drones can be seen reacting to individual 
commands without props on. Flight tests with simultaneous connection failed because of 
instability. We were unable to analyze flight logs to diagnose the issue before the COVID 
restrictions stopped our lab access. 

Implementing a mini-quad stand would benefit CPRE 488 students and future Microcart 
teams. We tested the physical model by attaching a Crazyflie and rotating it to ensure the printed 
model could handle the stress and allow the Crazyflie to move freely. The stand passed this 
evaluation.  
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The UI additions we made all service the needs of future Microcart teams, controls 
graduate students, and flight demonstration viewers. The PID sliders will help future Microcart 
teams and graduate students tune flight performance. The PID slider had the frontend and backend 
unit tested. The frontend test was that the GUI is able to use the slider bars to set values. The 
backend unit test tested setting and receiving these values to the quad platform. This was verified 
by the xsdk debugger in a video in the appendix.  

The Datalog Visualizer helps future MicroCART teams and Controls students by allowing 
them to solve complex flight issues. Graphing actual versus setpoint values allows both groups to 
tune the drone’s PID easier. The Datalog visualizer was tested at a high level by using the 
application to look at current and previous years log files to ensure compatibility. The datalog 
visualizer passed it’s evaluation. 

The Flight to Draw Widget shows the value of an ECPE degree to flight demonstration 
viewers. It is something that can be shown to impress people that visit the university. We tested it 
by drawing a simple line and watching the flight follow the path. It worked for simple paths only. 
We also confirmed the setpoints it generates are correctly formatted. The accuracy of the drone 
bottlenecks the performance of the widget.  

The MAVLink adapter will give future MicroCART teams that may want to test a new 
platform a very rich library to start with. Instead of hand designing hardware, firmware, and 
software from scratch, they can use a MAVLink platform in conjunction with the backend to do 
some autonomous navigation. This will allow them to implement higher level functionalities like 
GPS navigation or image processing navigation. This feature has working getnodes, getparam, and 
setparam commands for the adapter. The adapter has worked with the Ardupilot SITL testing.  

4. Project Timeline, Estimated Resources, and Challenges 

4.1 PROJECT TIMELINE 

First Semester Timeline 
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Second Semester Timeline 

 

4.2 FEASIBILITY ASSESSMENT 

On planning our tasks for the full Spring semester, we would have been able to complete                
all our tasks. However, with the circumstances of the pandemic at hand, we were unable to                
physically be in our lab and complete our tasks. We also didn’t have much of a fall back plan and                    
ended up finishing miscellaneous tasks, documentation and tutorials for future teams. 
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4.3 CHALLENGES 

Since we had our lab access revoked due to the recent pandemic, we needed to put a halt 
on some of our major requirements such as multidrone flight etc. These features were not fully 
completed.  

5. Testing and Implementation 

5.1 INTERFACE SPECIFICATIONS 

Our project requires a wide array of interface specifications. Another specification is an             
improved GUI to be more user friendly for future MicroCART teams. There is a module in the GUI                  
to allow the user to plot out a flight path for more dynamic flights. Another specification are the                  
Matlab and GUI data analysis tools. They take flight data from a text file in a specific format. (See                   
Appendix 6.3.2) 

5.2 HARDWARE AND SOFTWARE 

There are multiple software interfaces used for this project. This means multiple interfaces are used 
for debugging, interacting, and developing on these projects. The software worked on includes the 
C/FPGA controls application on the quadcopter, C/C++ code on the GCS, and C++ Qt Creator 
environment with GDB debug tools. 

 

● The Matlab interface outputs errors and expected values easily to the screen. Matlab 
interface specifies debug functions that can be used to trace computational errors in our 
simulation software. 

 

● Vivado and XSDK are interfaced with the embedded C and Programmable logic on the 
Zybo 7020 board. Both Vivado and XSDK have comprehensive testing functionality. XSDK 
can use JTAG/USB interface to debug embedded software on the FPGA board. 

 

● There is an interface with the C++ GUI application with the QTCreator IDE. This IDE has 
the Qt Test library, which supports a testing interface similar to JUnit tests. This tool also 
allows the user to set breakpoints in the code and use GDB to debug segfault errors. 

 

● The project consists of hardware that would test/debug interfaces. This is achieved as the 
printed circuit board we use has several copies of outputs. This will allow us to interface 
the hardware with oscilloscopes to take traces to resolve complex issues.  

 

5.3 FUNCTIONAL TESTING 

5.3.1 Unit Testing 

During our development and testing process,  new and existing software modules that we 
created were tested in accordance with IEEE software unit testing standard.We will follow the flow 
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diagram below for developing comprehensive unit tests for modules both on the GCS software, 
embedded platform software, and Matlab simulation software. 

 

 

This unit testing scheme was revised  to include unit testing for critical hardware 
components. Unit testing has already been done for many of the hardware components on the 
drone. Most of our software development has been in C/C++, C functions were unit tested in 
separate executables before moving on to integration tests within the existing software systems. 
Typically during the designing and testing process, c functions could be individually tested to 
confirm expected results and then integrated into the existing system for integration testing. Some 
code was hard to develop unit tests for because the code’s inputs were not easy to replicate outside 
of the existing system.  

5.3.2 Integration Testing 

After a software/hardware module made it past successful unit tests, we assumed that a 
module works, but the only way to verify its functionality after this point is to perform integration 
tests. Some integration tests had already been conducted for system submodules. We ran unit tests 
on our Breakout Circuit board and Zybo board, so after they were verified we ran integration tests 
with the two programmed boards interfacing with one another. These tests confirmed functionality 
for the Lidar and IMU hardware modules within the board integration environment. 
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5.3.3 System Testing 

 When substantial progress had been made on the development of the project, we ran 
system testing to confirm that the drone solution has fulfilled our design requirements as stated 
earlier in this document. Another one of the tests we developed was a test script that generates 
flight paths for the drones. When multiple drones fulfill this task independently, they were to be 
integrated together. Due to the embedded nature of the project it is difficult to describe the exact 
inner workings of a system test entirely. There are several videos of system tests for most 
deliverables shown in the videos section of the appendix (Appendix 6.3.10). The MAVLink adapter’s 
end to end functionality was tested in the SITL. The system tests were considered a success if the 
correct outputs were produced by the three test scripts while the MAVLink adapter was running. 
There was a system test done for the PID Slider that has a video. The system test involved starting 
up the widget and doing a write and read to confirm the drone PID values were updated.  

5.3.3 Acceptance Testing 

Acceptance testing was performed up to the progress we had made during the first half of 
this last semester. Although not all of our expected tasks have been completed and passed 
acceptance testing, we were able to complete acceptance testing for connecting multiple drones to 
the network, creating new GUI interface tools, and a draw-to-flight tool and the adapters.  

5.4 NON-FUNCTIONAL TESTING 

The non functional requirements for our design were as follows: improving the usability of 
our GCS,  improving drone flight responsiveness/latency, enhancing flight accuracy of the drone 
during autonomous navigation. These requirements will each have separate tests to ensure that 
their performance metrics are met.  

The utility of our GCS software had been evaluated by our primary user group. The GCS 
station has various functional requirements like the ability to send parameters to the drone, and 
the ability to receive measurements / data from the drone. We have been in contact with a 
graduate student that is in charge of emulating the needs of our primary user base. He evaluates 
the non-functional requirements for our GCS software like being able to find functionalities easily.  

In order to fulfill the nonfunctional requirement of latency, we have had to specify exactly 
what type of latency is being examined. The drone platform currently has log files that record 
sensor data such as, actuator output and user inputs. If a setpoint is given to a drone platform like 
the quadcopter or Crazyflie, the latency can be examined by observing the time between when a 
command was sent from the GCS and when the command was received by the quad platform. The 
latency of the current system with a networking configuration of one drone is on average 2-4 ms 
from the ground station and back. We made progress as we connected them through the client and 
were able to have two on the network, but never confirmed throughput to the two drones during 
flight. 

Flight accuracy metrics were analyzed with the drone’s data logging capabilities. The VPRN 
camera system will give an absolute reference to compare actual location to setpoint values. A 
drone navigating on an autonomous path shouldn’t vary more than half a foot from its intended 
location on any axis. Any more variance in flight path could introduce danger during swarm flight, 
and it would make the project ineffective for autonomous navigation research. 
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5.5 PROCESS 

We used a variety of tests to check on our second drone. Some examples of this include                 
testing the motors individually and all at once and testing if the drone worked with the given                 
scripts. We ran similar tests on the Crazyflie but with manual flight instead of scripts. The other                 
methods like drone swarm and GUI improvements are still a work in progress and we were still in                  
the process of testing them when the lab got closed.  

 

5.6 RESULTS 

– List and explain any and all results obtained so far during the testing phase  

● While testing for the current draw, I discovered that we are able to test across the entire 
drone power draw and divide by the number of motors to get the current draw of each 
motor. Remembering from my circuits class, this makes sense. since the controllers only 
use a couple milliamps, It is a negligible amount when considering the 10 amps RMS drawn 
per motor during flight. 
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● During the creation of the draw-to-flight PID widget, the program sent the coordinates to 
the drone that correctly defined the picture that was drawn, confirmed using the drone 
debugging platform that would list the coordinates. 

● The PID allowed the user to select commands to send to the drone. The drone’s debugging 
mode shows all the commands sent to it for easier verification. This is how the 
functionality of the PID controller was confirmed 

● The Datalog Visualizer was able to read from old and new log files in the format specified 
in the appendix. It also fulfilled desired UI functionalities. 

● The MAVLink adapter was able to process getparam, setparam, and getnodes commands 
from the MicroCART backend.  The adapter was able to set GPS setpoints for the 
simulation vehicle and direct it to travel.  

We’ve managed to make good progress on our Micro Cart project during this first and               
second semester. Our successful results so far include building a second working drone, soldering              
an FPGA, implementing some GUI improvements like sliders, building several Crazyflies and flying             
one of them, making a data analysis tool, connecting multiple drones to the network, design a                
draw-to-flight feature, and further network setup for multi-drone flight. 

The results we are working on improving is getting two drones flying at the same time,                
getting a Crazyflie swarm working, and implementing more GUI improvements. 

Some implementation issues we are running into is the lack of documentation for previous              
years code. This is a problem because whenever we try to run their code we get error messages so a                    
good chunk of our workload this semester was trying to understand and fix the code. Similarly, we                 
also have some issues on the hardware side of the project because there’s no documentation or                
instruction on what we’re supposed to do. We also had issues with our lab space since we need                  
admin access on the computers to continue working and we’re still waiting on that. 

6. Closing Material 

6.1 CONCLUSION 

This project had the goals of implementing the second drone, being able to fly multiple               
crazyflie platforms simultaneously, developing a tuning stand for the crazyflie platforms, flying            
multiple large quadcopters simultaneously, implementing the draw to flight widget, implementing           
the datalog visualizer widget, implementing the PID slider widget, and implementing the MAVLink             
GCS adapter. Several of these deliverables have passed system testing phases, and others have had               
progress made but no completion. Some lack of progress on deliverables can be attributed to               
COVID-19 restrictions. Each of these features can be mapped back to projected user needs for all 3                 
of our user groups. 

Implementing a second drone gives future MicroCART teams and graduate students a            
testing platform to develop on while maintaining another stable quadcopter that can be used for               
flight demonstration. This reduces future project overhead. Partial work and documentation done            
on the crazyflie adapter can be leveraged by future teams to fully support the crazyflies with the                 
GCS software. The development of a tuning stand is not complete, but the physical model is                
complete. This physical model provides an adequate testing environment for future MicroCART            
teams and graduate students.  
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The draw to flight widget can be demonstrated to prospective ECPE students and donors              
during tours. The datalog visualizer can be operated to view flight data from the drone. Viewing                
flight logs helps users see how flight performance can be improved by plotting actual position               
versus setpoints. The PID Slider widget helps users tune the PID gains that control the quadcopters                
flight performance.  

The MAVLink adapter gives users access to a rich control/telemetry library that is flexible              
enough to be geared towards several different controls applications. Modifying the existing            
MAVLink code will reduce the overhead in comparison with implementing an entirely new system.              
Having multiple quadcopters flying at the same time was not completed. The quadcopters were              
able to connect to the GCS at the same time, but they could not fly accurately. Multiple                 
quadcopters flying simultaneously could have been used during flight demonstrations.  

In conclusion, COVID-19 restrictions limited some progress on deliverables, but important           
functionalities were added to the existing system that will surely fulfill our user groups needs.  

6.2 REFERENCES 

Minimal  technical references were made throughout the document. Little technical 
documents were referenced as the majority of knowledge was pulled from previous work done by 
previous teams. 

[1] M. Rich, “Model Development, system identification, and control of a quadrotor 
helicopter” in Iowa State University Digital Repository, 2012  

[2] Wehr, David. “ESP8266 Wifi Latency Testing.” 17 Sept. 2016, 
https://docs.google.com/document/d/1VU99wMgkqK2EgbNLdqrdhvj9iikfqk2gtUYQ367K5-Q/e 
dit#heading=h.s0og8emj18jx  
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6.3 APPENDICES 

6.3.1 Backend 

 

Summary 

The Backend is responsible for handling front-end command requests.The Back-end acts as 
a TCP server that will accept requests for connections from the front-end. A request connection is 
opened every time a user types a command like getnodes or getparam. The backend translates the 
high level commands received from the front-end socket into a binary message format. 

 The messages are then sent to the current trackable file descriptor that is set using the 
settrackble command. The trackable file descriptors have the backend connected to a trackable 
object like an adapter or the quadcopter. Some messages will elicit a response like RESPNODES or 
RESPARAM from the given trackable. The backend will handle this response and send the message 
back to the client that called it. 

The backend holds a trackable_t struct list in the config.c file, that can be configured to 
connect to different trackables. If the trackable you want to control uses an adapter a path, then the 
adapter’s socket is supplied in the trackable_t struct. The trackable_t also can be configured to 
connect to the quads. The trackable file descriptor buffer can hold multiple file descriptors which 
allows communication with multiple quads at once. This would have been used if we finished work 
on the swarm flight deliverable. 

6.3.2 Data Log Visualizer 
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Summary 
The Datalog Visualizer reads saved flight data from the quadcopter platform. The 

quadcopter saves its flight data in the format outlined in the diagram above. The beginning of data 
starts with % which indicates the start of parameter names which are delimited by tabs. The 
Datalog visualizer reads this format and parses the data into arrays. The arrays are then fed into the 
QCustomPlot Widget for display. The widget allows the user to select an x and y axis to be plotted. 
By Default the x axis is set to the first parameter, which is time. A user can select multiple Y 
parameters to be graphed on the same plot for the same x axis. One theoretical usage of the current 
setup is using graphs for PID tuning. A user can plot the current position from the VRPN system 
and compare it with the setpoint location. A user can then determine PID qualities like steady-state 
error and settling time and change the PID gains accordingly.  

6.3.3 Quadcopter 
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6.3.4 CrazyFlie 

Crazyflie development was continued on from last year's team. Single flight was            
successfully achieved using a smartphone as a bluetooth controller. The development environment            
needed is now set up and multiple Crazyflies have been built for next year’s team.  

6.3.5 Tuning Stand 

The 3-D printed tuning stand was built for use in this project and another one of  Dr. Jones' 
classes. The tuning table allows for testing Crazyflie rotation around 2 axes. It can also be used to 
make sure the Crazyflie auto correction is working since the Crazyflie should be correcting itself 
upright while you spin it. 

6.3.6 Swarm Flight 

This deliverable was significantly impacted by COVID-19 restrictions. The quadcopters 
relied on the VRPN system in Coover 3050 to navigate. The restrictions that prevented accessing 
the lab stopped the completion of this deliverable. There was partial progress made. The second 
quadcopter platform was built. The platform was then able to fly with control commands with the 
existing software. The backend and network adapters for the drones were configured to have the 
GCS as the wifi access point and the quadcopters as client connections.  

The vehicles were able to receive control commands from the backend while both were 
connected simultaneously. There is a video in the appendix that shows the high level test for both 
of them communicating at the same time. They were not able to fly accurately while connected at 
the same time. This happened the week before spring break, so this issue was not resolved. A 
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markdown documentation was created to describe connecting multiple trackables, so a future team 
could finish this deliverable if they choose.  
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6.3.7 MAVLink 

 

 

 Summary 

Due to the lack of progress made on other deliverables due to the COVID-19 restrictions, 
the MAVLink adapter was added to the project because it could be implemented remotely. To 
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explain what defines the functional and nonfunctional requirements of the MAVLink adapter, a 
brief introduction will be given.  MAVLink is a messaging protocol used to communicate with 
drones and autonomous vehicles (Rovers, Submarines, etc). MAVLink can be used to control an 
AV’s navigation by sending specific types of commands to an AV with autopilot software. MAVLink 
is under free software license and the libraries can be modified, which makes it flexible to whatever 
user group may decide to use it in the future.  

The MicroCART GCS supports connecting to adapters that convert the communication 
protocol listed below into a protocol that is compatible with the AV to be controlled. This 
deliverable will involve implementing one of these adapters to communicate to a AV that supports 
MAVLink navigation. The first diagram above depicts how the MAVLink adapter fits within the 
existing system. The MAVLink adapter connects to the GCS backend as a trackable connection. 
This establishes a tcp socket between the two softwares. The MAVLink adapter will translate the 
MicroCART commands into commands with roughly equivalent functionality in MAVLink. The 
MAVLink library is tens of thousands of lines of code, so only the subset of commands necessary to 
move the vehicle are supported. 

The MicroCART commands that are supported are getparam, setparam, and getnodes. The 
getparam and setparam commands are used to set constant parameter values in the node data 
structure shown in the second diagram above. A user can use set and get to change the values of 
the parameters in the graph, which control how the AV navigates.  

The getnodes command has been slightly modified because of overflow restrictions within 
the MicroCART commands. The getnodes command was used for viewing all the settable 
parameters within a control graph on the quadcopter. The GCS backend software only supports 
responses of 4096 bytes at maximum. There are roughly 1000 MAVParameters that can be set on an 
AV that supports MAVLink. Getting all the settable parameters with their 16 byte names attached is 
impossible unless you view a sub-window of parameters. The getnodes for the MAVLink adapter 
looks at 150 parameters starting from the value set in the MAVParam start index node. The start 
index node is fixed, so a user can change the value to view and set more parameter values. 

For example, if a user wanted to set the 200th MAVParam, they could set the start index to 
150 and the node id to 55. It is 55, and not 50 because the first 5 nodes are static and always 
accessible. The last node at node 156 is also static and gives the number of MAVParams available. 
The first 5 static nodes are used for setting setpoints and enabling autonomous navigation.  

This deliverable maps into our user groups’ needs. There are several open source projects 
that use MAVLink for communication (MAVProxy and Ardupilot). These open source projects can 
have their software changed slightly to fit a future team’s needs. When the team modifies the 
software, they can then deploy it on a physical platform. MAVLink supports GPS navigation and 
sensor processing very well, so if a team wanted to take a quadcopter platform outside they would 
have significantly reduced overhead to implement something that could move around outside. 
Flight demonstrations also impress prospective students more if the control software is flexible 
enough to control different types of vehicles.  

The source code for this deliverable is at this url. Test scripts run to evaluate the adapters 
are shown in the videos section. 
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6.3.8 Communication Protocol 

 

Index 0 1 2 3 4 5+datalen 6+datal
en 

Message 
Parameter 

Begin 
Char 

Messa
ge 

Type 

Mess
age 
Id  

Data 
Len 

Data Checksum End 
Char 

Bytes 1 2 2 2 var 1 1 

 

Message Type 

Debug 0x0 log_end_id 0x06 get_nodes 0xC 

Packetlog 0x1 set_param 0x07 resp_nodes 0xD 

GetPacketLogs 0x2 get_param 0x08 add_node 0xE 

Update_id 0x3 respparam 0x9 resp_add_node 
0xF 

beginupdate 0x4 setsource 0xA  

log_id 0x5 getsource 0xB  

 

Summary 

The Microcart Communication protocol can be seen in the diagram above. A beginning 
character 0xBE is  the first index in the packet indicating the start of the frame. After that the next 
two bytes determine the message type which could be any of the types shown in the table above. 
The majority of the message types either get or set some configurable value on the platforms that 
modify navigation performance.  

.6.3.10 Videos 

 

Connecting To Multiple Quadcopters Simultaneously 

MAVLink Adapter Supporting Missions 

MAVLink Adapter Supporting Get and Set Params 

MAVLink Adapter Supporting Get Nodes 
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https://drive.google.com/open?id=1gsZB4njdBrsjb4u6OEuwdkVJeJlxLNU-
https://drive.google.com/open?id=1ANMaBr_Nl7jgJDIMTYREuvmt2zG9vc3A
https://drive.google.com/open?id=19_h8x3ShZEr7sirglvudpbNwkw27VMma
https://drive.google.com/open?id=1wJrz6Er3oOxwhnGxhRS-e0sFR5fz2vX1


 

Datalog Visualizer in Operation 

PID Slider In Operation 

Tuning Stand Implemented 

 

Fig 1. Successful Quad motor test reading 

 

Fig 2 Tuning Table in action 
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https://drive.google.com/open?id=1stb3FGYmHRLxK5zkALNUSXNrdfYysxgv
https://drive.google.com/open?id=11s-bCbT4pxPjn6ffx7MKcouOc2bBkysb
https://drive.google.com/open?id=1JSfgh_Ib_rmyuhuM9fN_V7oDnWWMa86z


 

 

SDMAY20-50     40 
 


